
Evolving with Camunda:
Architecture, UI and
Orchestration
Yuvraj Keenoo

2

About Me

Yuvraj Keenoo
Senior Software Engineer at MCB

11+ years experience in IT

Lives in Mauritius

Master degree in Software
Engineering Projects and

Management

Part-time Tutor at Open
University of Mauritius

3

Agenda

Migration

Architecture

User Interface

Service Collaboration

Resource Optimization

Take Away

4

What’s in it for you?

• Share experiences around migration from legacy system to Camunda BPM

• Benefit from our lessons learnt

5

Migration

6

Legacy system

• Bought in 2012

• Monolithic system
• Application deployed in one server

• One database

• Less scalable and configurable

• Closed-source (black box components)

• No use of BPMN standards

• Deployment takes time

7

How it started with Camunda BPM?

Sep-2018

Experimentation at
Digital Factory Lab

& attended
CamundaCon

Feb-2019

Implemented
Camunda BPM

Community
version

Aug-2021

Coarse-grained
services

(SOA)

Jun-2020

Rollout the
Camunda BPM

Enterprise version

Jan-2022

Fine-grained
services

(Microservice)

8

Legacy vs Modern apps

Legacy apps Modern apps

No in-built support for mobile
app

Cross platform

Fixed user interfaces Themable / Branded UX

Limited integration capabilities Designed for integration and
mashups

Static fields and relationships Extensible fields and dynamic
relationships

9

Migration strategies

• Depending on the nature of the process, we have adopted different
combination of migration strategies such as:
1. Big bang

• old process was stopped on the core banking system

2. Phased
• progressively adding features to the application deployed for all business unites

3. Pilot + phased
• deployed to some business units and new features were added progressively to the

application

10

Migration

Architecture

11

Why to review architecture as and when needed?

• Point out places where architecture fails to meet requirements and show
alternative designs that would work better

• Determine where finer-grain depictions of architecture are needed

• Ensure consistency across entire system

• Disseminate ideas on what constitutes a good architecture to align with
industry standards and best practices

http://lhcb-comp.web.cern.ch/Reviews/Gaudi-1998/goals_of_the_architecture_review.htm

12

Architecture - Version 1.0

• 1 frontend and 1 backend layer

Backend Layer

Application layer

13

Architecture - Version 2.0

• 1 frontend and 3 backend layers

• Coarse-grained services

Service Layer

Engine Layer

Application layer Service
Extension

Layer

Processes:
1. Card PIN request
2. Customer onboarding
3. Document classification

14

Architecture - Version 3.0

• Isolated processes

• Fine-grained services
Card PIN request service

Document classification service

Customer onboarding service

15

Target Microservice Architecture

Simplified version

16

Technology Stack

17

Migration

Architecture

User Interface

18

Having a good UI/UX makes users feel more comfortable and are able to get
things done more quickly.

19

Benefits of Angular

• Business benefits
• Cross-platform

• High quality of the application
• User friendliness

• Improved speed and performance (SPAs – lazy loading)

• Technical benefits
• Faster development process (Ivy compiler engine)

• Unit and E2E test cases

• More lightweight web applications

• Codes reusability

• Availability of excellent material design library

Angular is an application
design JavaScript framework
and development platform for
creating efficient and
sophisticated single-page apps
(SPAs).

20

Achievements with Angular

• Can design complex screens: PDF viewer, reactive forms, etc.

• Angular material design: pagination, dialog box, etc.

• MCB branded UI/UX – Custom Angular library

• Code reusability: components, custom directives and pipes

• Custom to-do list: assigned, unassigned and team tasks

• Authentication and interceptor

• Encryption and decryption (using CryptoJs)

21

Migration

Architecture

User Interface

Service Collaboration

22

Service Collaboration

• Data ingestion from the Core Banking System to the Omni-channel system

Core Banking
System

Omni-Channel
System

Camunda Engine

Events
table

23

Service Collaboration

• Customer onboarding process (simplified version)

24

Migration

Architecture

User Interface

Service Collaboration

Resource Optimization

25

Optimize your Spring Boot apps

• Segregate your application data
• Frontend and backend

• Actuator metrics

• Prometheus

• Shedlock

• Stable dependencies and open-source resources

• GraphQL

• API Health Check

26

Migration

Architecture

User Interface

Service Collaboration

Resource Optimization

Take Away

27

Take Away

• Orchestration (synchronous) vs choreography (asynchronous)

• Implement event-driven microservice by Chris Richardson
• Microservice + Events + Docker = The Perfect Trio

• Loose coupling and distributed

• Think services not objects

• Git branching model
• Branch early, branch often

• Strictly adhere to the BPMN standards

• Timeout user session (monitor user activity using host listener) and
renewing JWT

28

Take Away

• Use SOLID principles in Java
• Single Responsibility Principle

• Open-Closed Principle

• Liskov Substitution Principle

• Interface Segregation Principle

• Dependency Inversion Principle

• Code smell with SonarQube

• Database: entity relationships, indexes, audit fields, write procedures and
functions inside packages

• Collect everything (logs, metrics, pings and traces)
• Can use Kibana and Elasticsearch to visualize logs

29

Recap

Migration

Architecture

User Interface

Service Collaboration

Resource Optimization

Take Away

30

Roadmap

02
Microservice

January 2022
Omni-channel
integration
June 202203

01 November 2021

Upgrade Camunda
BPM

Distributed event
streaming

…
04

** Some dates can change

#CAMUNDACON

Thank You

Questions?

