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Basics
Camunda 8 overview
Data flow in orchestration Cluster

Challenge(s) - solving cycle

Identify challenges with our current architecture
Make a plan to overcome those challenges
Implement the solution

Evaluate our solution

What's next




CAMUNDA
CON EF3 Camunda 8

AMSTERDAM Overview
+ 9 9
/
4




Camunda 8

Optimize

@-@‘ Operate

Zeebe cluster

Wehb Modeler —j
o
DB

Elasticsearch
Connectors cluster

Tasklist

lw)
ev)

Identity
e
IdP

Basics > Overview

e



Camunda 8

e

Optimize

Wehb Modeler —J
o
DB

User

@@ operate

Zeebe cluster

Elasticsearch
Connectors cluster

Tasklist

m

m. | | ]

> Identity

Basics > Overview




Orchestration Cluster

Basics > Overview

User

»)

Operate

<

Zeebe cluster

Tasklist

Elasticsearch
cluster

e



CAMUNDA
CON EFJ Data flow

AMSTERDAM




A Tale of Two Storages

SECONDARY STORAGE

e

Elasticsearch cluster

.E PRIMARY STORAGE

Zeebe cluster

Basics > Data flow




Primary Storage

1) Send Command

2) Response

Basics > Data flow

PRIMARY STORAGE

SECONDARY STORAGE

Zeebe cluster

Engine

Process Commands -
confirms with Events

Elasticsearch cluster

e




Secondary Storage

1) Send Command
2) Response

Basics > Data flow

PRIMARY STORAGE

Zeebe cluster

Engine

Process Commands -
confirms with Events

Exporter

3) Export Event

SECONDARY STORAGE

Elasticsearch cluster

Zeehe indices

e




The Importer: Aggregating

SECONDARY STORAGE

e

Elasticsearch cluster

Operate

P Importer

(4

0 =
PRIMARY STORAGE

4) Read Zeebhe Indices

1) Send Command
Zeebe cluster

Engine

3) Export Event Zeebe indices

Process Commands - Exporter
confirms with Events

2) Response

Basics > Data flow




The Importer: Aggregating

PROCESS: COMPLETING

e



The Importer: Aggregating

{ bpmnProcessld, key, ... } =——

Process Instance
Entity

( key, startDate,
endDate, state, ...)

state: activated

state: completing

[ { state: completed, endDate: ... } =————

[ PROCESS: CREATED ]

[ PROCESS: ACTIVATED ] wes [PROCESS: COMPLETING]

[PROCESS: COMPLETED J

Basics > Data flow

e



The Importer: Writeback

SECONDARY STORAGE

e

Elasticsearch cluster

Operate

Operate indices
Importer

5) Write aggregated data

PRIMARY STORAGE 4) Read Zeebe Indices

1) Send Command
Zeebe cluster

Engine

3) Export Event

Process Commands - Exporter Zeebe indices

confirms with Events

2) Response

Basics > Data flow




E2E Data Flow

SECONDARY STORAGE

e

Elasticsearch cluster

Operate

[ 6) Read data data

User UI
Operate indices

5) Write aggregated data

PRIMARY STORAGE

4) Read Zeebe Indices

1) Send Command
Zeebe cluster

Engine

3) Export Event

Process Commands - Exporter Zeebe indices

confirms with Events

2) Response

Basics > Data flow




And that’s only part of it...

SECONDARY STORAGE

Observe/
Consume UL

1) Send Command
User

2) Response

Observe/
Consume UL

Basics > Data flow

Operate

Archiver

[archiver]

6) Read data

Archive finished instances

| 5) Write aggregated data

PRIMARY STORAGE

4) Read Zeebe Indices

Zeebe cluster

Engine

Process Commands -
confirms with Events

Exporter

3) Export Event

4) Read Zeebe Indices

Tasklist

Importer

[importe

5) Write aggregated data

6) Read data

Archive finished instances

Elasticsearch cluster

Operate
historic
indices

Operate

indices

Clean up

Clean up

Zeebe indices

Tasklist
indices

Tasklist
historic
indices

Clean up

ILM




Mantra

Challenge(s) handling

e



Mantra

Challenge(s) handling

There are no problems, only challenges;

e



Mantra

e

There are no problems, only challenges;

We have the opportunity to grow with every challenge.
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Brownfield

Software engineering is not hard because we have to create new things.

It is hard because we have to maintain old products and versions.
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Brownfield

Photo by Markus Winkler on Unsplash

Challenge(s) handling > Implement

¥

For more details,
please check
our upcoming update guide.

e


https://docs.camunda.io/docs/next/self-managed/operational-guides/update-guide/870-to-880/
https://unsplash.com/@markuswinkler?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/@markuswinkler?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/white-printer-paper-on-green-typewriter-cxoR55-bels?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/white-printer-paper-on-green-typewriter-cxoR55-bels?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
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Photo by Eric Prouzet on_Unsplash

Challenge(s) handling > Evaluate


https://unsplash.com/@eprouzet
https://unsplash.com/photos/a-close-up-of-a-clock-on-a-wall-_MOOIjWPzSM
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Challenge(s) handling > Evaluate

Load testing with
real use-case
Based on Credit
Fraud Detection

blueprint

e


https://marketplace.camunda.com/en-US/apps/449510/credit-card-fraud-dispute-handling
https://marketplace.camunda.com/en-US/apps/449510/credit-card-fraud-dispute-handling
https://marketplace.camunda.com/en-US/apps/449510/credit-card-fraud-dispute-handling

Load testing

Challenge(s) handling > Evaluate
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https://marketplace.camunda.com/en-US/apps/449510/credit-card-fraud-dispute-handling
https://marketplace.camunda.com/en-US/apps/449510/credit-card-fraud-dispute-handling
https://marketplace.camunda.com/en-US/apps/449510/credit-card-fraud-dispute-handling

Load testing - Deployment

Before After
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Resource
consumption

Challenge(s) handling > Evaluate

Harmonized indices schema diagram
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Resource consumption

ES Disk Usage 8.8 8.7 - ES Disk Usage

ES CPU Usage 8.8 8.7 - CPU Usage

ES Memory Usa 8.7 - ES Memory Usage

Challenge(s) handling > Evaluate
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Performance - Before
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Performance - Before
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What’s next
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Several other new possibilities



Always improve

All of this to improve and provide a kick-ass user experience;

and a product you can rely on.
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Marcos Vieira

Joshua Windels
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Nicolas Pepin-Perreault

Christopher Kujawa
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https://github.com/ChrisKujawa
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mailto:christopher.kujawa@camunda.com
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https://www.linkedin.com/in/kujawa-christopher/
https://camunda.github.io/zeebe-chaos/

Questions?
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