GAMUNDA
CON EF3

AMSTERDAM

One exporter to
rule them all

Introductions

Christopher Kujawa
Principal Software
Engineer
Camunda

Nicolas Pepin-Perreault
Engineering Manager
Camunda

C

Operational delay

B operate

Incidents View - 1 result

0 1 Incident occurred

Incident Type Failing Flow Node

Instance History CID showEnd Date (I Show Execution Count
@~ D test

Job Id

Creation Date

4 Eror Message

Variables

Filter by Flow Node v Filter by Incident Type v

Operations
e o
Value
1 =) x
o

Basics

One
exporter to
rule them
all

https://unsplash.com/@davidsonluna?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/@davidsonluna?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/map-8zvGIv4pw1I?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/map-8zvGIv4pw1I?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Basics
Camunda 8 overview
Data flow in orchestration Cluster

Challenge(s) - solving cycle

Identify challenges with our current architecture
Make a plan to overcome those challenges
Implement the solution

Evaluate our solution

What's next

CAMUNDA
CON EF3 Camunda 8

AMSTERDAM Overview
+ 9 9
/
4

Camunda 8

Optimize

@-@‘ Operate

Zeebe cluster

Wehb Modeler —j
o
DB

Elasticsearch
Connectors cluster

Tasklist

lw)
ev)

Identity
e
IdP

Basics > Overview

e

Camunda 8

e

Optimize

Wehb Modeler —J
o
DB

User

@@ operate

Zeebe cluster

Elasticsearch
Connectors cluster

Tasklist

m

m. | |]

> Identity

Basics > Overview

Orchestration Cluster

Basics > Overview

User

»)

Operate

<

Zeebe cluster

Tasklist

Elasticsearch
cluster

e

CAMUNDA
CON EFJ Data flow

AMSTERDAM

A Tale of Two Storages

SECONDARY STORAGE

e

Elasticsearch cluster

.E PRIMARY STORAGE

Zeebe cluster

Basics > Data flow

Primary Storage

1) Send Command

2) Response

Basics > Data flow

PRIMARY STORAGE

SECONDARY STORAGE

Zeebe cluster

Engine

Process Commands -
confirms with Events

Elasticsearch cluster

e

Secondary Storage

1) Send Command
2) Response

Basics > Data flow

PRIMARY STORAGE

Zeebe cluster

Engine

Process Commands -
confirms with Events

Exporter

3) Export Event

SECONDARY STORAGE

Elasticsearch cluster

Zeehe indices

e

The Importer: Aggregating

SECONDARY STORAGE

e

Elasticsearch cluster

Operate

P Importer

(4

0 =
PRIMARY STORAGE

4) Read Zeebhe Indices

1) Send Command
Zeebe cluster

Engine

3) Export Event Zeebe indices

Process Commands - Exporter
confirms with Events

2) Response

Basics > Data flow

The Importer: Aggregating

PROCESS: COMPLETING

e

The Importer: Aggregating

{ bpmnProcessld, key, ... } =——

Process Instance
Entity

(key, startDate,
endDate, state, ...)

state: activated

state: completing

[{ state: completed, endDate: ... } =————

[PROCESS: CREATED]

[PROCESS: ACTIVATED] wes [PROCESS: COMPLETING]

[PROCESS: COMPLETED J

Basics > Data flow

e

The Importer: Writeback

SECONDARY STORAGE

e

Elasticsearch cluster

Operate

Operate indices
Importer

5) Write aggregated data

PRIMARY STORAGE 4) Read Zeebe Indices

1) Send Command
Zeebe cluster

Engine

3) Export Event

Process Commands - Exporter Zeebe indices

confirms with Events

2) Response

Basics > Data flow

E2E Data Flow

SECONDARY STORAGE

e

Elasticsearch cluster

Operate

[6) Read data data

User UI
Operate indices

5) Write aggregated data

PRIMARY STORAGE

4) Read Zeebe Indices

1) Send Command
Zeebe cluster

Engine

3) Export Event

Process Commands - Exporter Zeebe indices

confirms with Events

2) Response

Basics > Data flow

And that’s only part of it...

SECONDARY STORAGE

Observe/
Consume UL

1) Send Command
User

2) Response

Observe/
Consume UL

Basics > Data flow

Operate

Archiver

[archiver]

6) Read data

Archive finished instances

| 5) Write aggregated data

PRIMARY STORAGE

4) Read Zeebe Indices

Zeebe cluster

Engine

Process Commands -
confirms with Events

Exporter

3) Export Event

4) Read Zeebe Indices

Tasklist

Importer

[importe

5) Write aggregated data

6) Read data

Archive finished instances

Elasticsearch cluster

Operate
historic
indices

Operate

indices

Clean up

Clean up

Zeebe indices

Tasklist
indices

Tasklist
historic
indices

Clean up

ILM

Mantra

Challenge(s) handling

e

Mantra

Challenge(s) handling

There are no problems, only challenges;

e

Mantra

e

There are no problems, only challenges;

We have the opportunity to grow with every challenge.

+

Challenge(s) handling

CAMUNDA
CON EF3

AMSTERDAM

fdentify \

Challenge handling
cycle

CAMUNDA
CON EF3

AMSTERDAM

+

cycle

Challenge handling 9

e are here now

v

Reviewing our architecture

Observe/
Consume UL

1) Send Command

User

Observe/
Consume UL

Challenge(s) handling > Identify

2) Response

Operate

Archiver

[archiver]

I Archive finished instances

6) Read data

| 5) Write aggregated data

PRIMARY STORAGE

4) Read Zeebe Indices

Zeebe cluster

Engine

Process Commands -
confirms with Events

3 E tE t
Exporter) Export Even

4) Read Zeebe Indices

Tasklist

Importer

l Archiver

5) Write aggregated data

6) Read data

Archive finished instances

SECONDARY STORAGE

Elasticsearch cluster

Operate
h

istoric
indices

Clean up
Operate
indices
Clean up
Zeebe indices A

Tasklist
indices

Tasklist
historic
indices

Clean up

ILM

e

Jr Installation complexity

Chauenges * Resource consumption
with the
architecture v Scalability

N Performance

L] =g

Jr Installation complexity

Chauenges * Resource consumption
with the
architecture v Scalability

N Performance

L] =g

Installation complexity

Observe/
Consume UL

1) Send Command
User

2) Response

Observe/
Consume UL

Challenge(s) handling > Identify

Operate

Archiver

[archiver]

PRIMARY STORAGE

Archive finished instances

6) Read data

5) Write aggregated data

4) Read Zeebe Indices

Zeebe cluster

Engine

Process Commands -
confirms with Events

Exporter

4) Read Zeebe Indices

Tasklist

Importer

l Archiver

5) Write aggregated data

6) Read data

Archive finished instances

3) Export Event

SECONDARY STORAGE

Elasticsearch cluster

Operate
historic
indices

Operate

indices

Clean up

Clean up

Zeebe indices

Tasklist
indices

Tasklist
historic
indices

Clean up

ILM

e

Jr Installation complexity

Chauenges * Resource consumption
with the
architecture v Scalability

A Performance

L] =g

Secondary storage:
Resource consumption

SECONDARY STORAGE

Elasticsearch cluster

Operate |

[Archiver 1 I Archive finished instances Operate
historic

6) Read data indices Clean up

Observe/ Operate

Consume UI 5) Write aggregated dafa indi
Importer |) gdred: indices

4) Read Zeehe Indices

PRIMARY STORAGE
Zeebe cluster

Clean u,
Engine P

1) send Command 3 E + Event L
User Process Commands - Exporter) Export Even Zeebe indices ILMm
confirms with Events

2) Response

4) Read Zeebe Indices

Tasklist

indices

Tasklist

Observe/ Importer

Consume UL - | &) Read data Tasklist
“ historic
indices

l Archiver |

5) Write aggregated data

Cleanup

Archive finished instances

Challenge(s) handling > Identify

e

Secondary storage:
Resource consumption

SECONDARY STORAGE

Elasticsearch cluster

Operate I
w | Archive finished instances Operate
hi

istoric
6) Read data

indices
Observe/ Operate
Consume UI 5) Write aggregated data indices

4) Read Zeebe Indices
PRYMARY STORAGE

Zeebe cluster

We uge cimilar Importer and Archiver

to do cimilar thinge

Clean up

Clean up

Engine

1) Send Command

User PRjess Commands - 3 Export Event Zeebe indices |4— ILM
| conms with Events

2) Response

4) Read Zeebe Indices

Tasklist
indices

5) Write aggregated data

Ohserve/
Consume UI

Tasklist
historic
indices

6) Read data Clean up

N Archive finished instances
lArchlver

Challenge(s) handling > Identify

Secondary storage:
Resource consumption

We use cimilar Importer and Archiver SECONDARY STORAGE

Elasticsearch cluster
Operate
\m’
l

e

to do cimilar thinge ~ ¢tore cimilar data, like:

N

Archive finished instances Operate

historic
indices

rogece inctance,

6) Read data

5) Write aggregated data
|

4
4) Read Zeebe Indices /

PRIMARY STORAGE
Zeebe cluster

Operate
indices

eployment, ete

Engine

3) Export Event -
Process Commands - Exporter L Exp Zeebe indices
confirms with Events

4) Read Zeebe Indices

Tasklist
indices

5) Write aggregated data
Ohserve/

Consume UI

Importer

Tasklist
historic
indices

6) Read data

Clean up

N Archive finished instances
lArchlver

Challenge(s) handling > Identify

Secondary storage:
Resource consumption

Duplicated data

Operate indices

operate-batch-operation-1.0.0_
operate-decision-8.3.0_
operate-decision-instance-8.3.0_
operate-decision-requirements-8.3.0_
operate-event-8.3.0_
operate-flownode-instance-8.3.1_
operate-import-position-8.3.0_
operate-incident-8.3.1_
operate-list-view-8.3.0_
operate-message-8.5.0_
operate-metric-8.3.0_

operate-operation-8.4.0_
operate-post-importer-queue-8.3.0_
operate-process-8.3.0_
operate-sequence-flow-8.3.0_
operate-user-1.2.0_
operate-user-task-8.5.0_
operate-variable-8.3.0_
operate-web-session-1.1.0_

operate-migration-steps-repository-1.1.0_

Duplication

Tasklist indices

tasklist-flownode-instance-8.3.0_
tasklist-import-position-8.2.0_
tasklist-metric-8.3.0_
tasklist-migration-steps-repaository-1.1.0 _
tasklist-process-8.4.0_
tasklist-user-1.4.0_
tasklist-task-8.5.0_
tasklist-variable-8.3.0_
tasklist-web-session-1.1.0_
tasklist-draft-task-variable-8.3.0_
tasklist-task-variable-8.3.0_
tasklist-form-8.4.0
tasklist-process-instance-8.3.0_

Challenge(s) handling > Identify

e

Jr Installation complexity

Chauenges * Resource consumption
with the
architecture v Scalability

N Performance

L] =g

Scalability

Overview - 8.7 state (simplified)

User
eg®
@

g >cat//mg —

1) Send Command

2) Response

Challenge(s) handling > Identify

Operate

uI

PRIMARY STORAGE

6) Read data

5) Write aggregated data

4) Read Zeebe Indices

Zeebe cluster

Engine

Process Commands -
confirms with Events

Exporter

3) Export Event

SECONDARY STORAGE

Elasticsearch cluster

Operate
indices

Zeebe indices

e

Scalability

Overview - 8.7 state (simplified)

e

SECONDARY STORAGE

Elasticsearch cluster

Operate

[ees]
6) Read data
) Operate indices
User
il
. 5) Write aggregated data

4) Read Zeebe Indices

PRIMARY STORAGE
Zeebe cluster

gta t,'c PARTITION 1

N Engine ‘
gca/’ hgl Process Commands - ‘ Exporter

confirms with Events
only

3) Export Event

Zeebe indices

PARTITION N

Engine ‘
Process Commands - ‘ Exporter

confirms with Events

Challenge(s) handling > Identify

Scalability

Overview - 8.7 state (simplified)

Operate

PRIMARY STORAGE

6) Read data

5) Write aggregated data

4) Read Zeebe Indices

Sealing partitions

Zeebe cluster

PARTITION 1

~

Engine

confirms with Events

Process Commands - ‘

Exporter

1) Send Commy

2) Response

PARTITION N

Engine

confirms with Events

Process Commands - ‘

Exporter

Vo

Challenge(s) handling > Identify

Exporter

3) Export Event

SECONDARY STORAGE

Elasticsearch cluster

Operate indices

ceales with

Zeebe indices

e

Scalability

Overview - 8.7 state (simplified)

User
L0
@

Operate

PRIMARY STORAGE

Doecn't ccale with

6) Read data

5) Write aggregated data

4) Read Zeebe Indices

Zeebe cluster

PARTITION 1

Engine ‘

Process Commands -
confirms with Events

Exporter

1) Send Command

2) Response

3) Export Event

PARTITION N

Engine ‘

Process Commands -
confirms with Events

Exporter

Challenge(s) handling > Identify

SECONDARY STORAGE

Elasticsearch cluster

Operate indices

Zeebe indices

e

e

Scalability

Overview - 8.7 state (simplified)

SECONDARY STORAGE
Elasticsearch cluster

Operate

(CC—
6) Read dat
e e
User
.I.'.

5) Write aggregated data

4) Read Zeehe Indic

PRIMARY STORAGE ecou /I"’l /I'Phl'tf
Zeebhe cluster \ D P 9)

PARTITION 1 /—> our dy"lah’ll'c
Engine ‘: cca/ing a,bproacA

Process Commands - Exporter
confirms with Events

1) Send Command

2) Response
3) Export Event

Zeebe indices

PARTITION N

Engine
Process Commands - Exporter
confirms with Events

Challenge(s) handling > Identify

Jr Installation complexity

Chauenges * Resource consumption
with the
architecture v Scalability

N Performance

L] =g

Performance

Overview - 8.7 state (simplified)

User
eg®
@

1) Send Command

2) Response

Challenge(s) handling > Identify

Operate

uI

PRIMARY STORAGE

6) Read data

5) Write aggregated data

4) Read Zeebe Indices

Zeebe cluster

Engine

Process Commands -
confirms with Events

Exporter

3) Export Event

SECONDARY STORAGE

Elasticsearch cluster

Operate
indices

Zeebe indices

e

Performance

Overview - 8.7 state (simplified)

User

eg®

1) Send Command

2) Response

50 ms

Challenge(s) handling > Identify

Operate

uI

Importer

PRIMARY STORAGE

6) Read data 2 s

50 ms

5) Write aggregated data

4) Read Zeebe Indices

Zeebe cluster

Engine

Process Commands -

confirms with Events

Exporter

3) Export Event

100 ms

2s

SECONDARY STORAGE

Elasticsearch cluster

Operate
indices

1s

Zeebe indices

e

Performance

Overview - 8.7 state (simplified)

User

eg®

1) Send Command

2) Response

50 ms

Challenge(s) handling > Identify

Operate

uI

PRIMARY STORAGE

6) Read data 2 S

50 ms

5) Write aggregated data

4) Read Zeebe Indices

Zeebe cluster

Engine

Process Commands -

confirms with Events

Exporter

3) Export Event

100 ms

2s

SECONDARY STORAGE

Elasticsearch cluster

Operate
indices

1s

Zeebe indices

e

Performance

Overview - 8.7 state (simplified)

User

Qe

.5 °

eg®

\3«1@
123

Operate

uI

PRIMARY STORAGE

6) Read data 2 S

50 ms

5) Write aggregated data

4) Read Zeebe Indices

1) Send Command

2) Response

50 ms

Zeebe cluster

Engine

Process Commands -
confirms with Events

Exporter

3) Export Event

100 ms

2s

Challenge(s) handling > Identify

SECONDARY STORAGE

Elasticsearch cluster

Operate
indices

1s

Zeebe indices

e

Performance

Overview - 8.7 state (simplified)

User

5!

g &

12y

kgﬁﬂ

Operate

SECONDARY STORAGE

Elasticsearch cluster

1) Send Command

2) Response

50 ms

Expectation 1-2 s

—

Zeebe cluster
Engine
Process Commands - Exporter
confirms with Events
100 ms

Challenge(s) handling > Identify

3) Export Event

2s

Zeebe indices

e

Jr Installation complexity

Chauenges * Resource consumption
with the
architecture v Scalability

N Performance

L] =g

CAMUNDA
CON EF3

AMSTERDAM

<+

cycle

Challenge handling 9

e are here now

We need to change our architecture

Observe/
Consume UT

1) Send Command
User

2) Response

Observe/
Consume UL

Challenge(s) handling > Plan

Operate

Archiver

e
|

Archive finished instances

6) Read data

5) Write aggregated dafa

PRIMARY STORAGE

4) Read Zeebe Indices

Zeebe cluster

Engine

Process Commands -
confirms with Events

3)E tE t
Exporter) Export Even

4) Read Zeebe Indices

Tasklist

Importer

5) Write aggregated data

g

6) Read data

N Archive finished instances
{ Archiver

SECONDARY STORAGE

Elasticsearch cluster

Operate
h

istoric
indices Clean up

Operate

indices

Clean up

Zeebe indices *

Tasklist
indices

Tasklist
historic
indices

Clean up

ILM

e

Move closer to the processing

Observe/
Consume UT

1) Send Command
User

2) Response

Observe/
Consume UL

Challenge(s) handling > Plan

Operate

Archiver

Importer

6) Read data

5) Write aggregated dafa

PRIMARY STORACA

4) Read Zeebe Indices

Process Commands -
confirms with Events

Zeebe clu?ﬂ\
Engine

Exporter

//

4)

ad Zfebe Indices

Tasklist {
Importer

g

{ Archiver

) Write aggregated data

6) Read data

Archive finished instances

Archive finished instances

3) Export Event

SECONDARY STORAGE

Elasticsearch cluster

Operate
historic
indices Clean up
Operate
indices
Clean up

Zeebe indices

Tasklist
indices

Tasklist
historic
indices

Clean up

ILM

e

Get rid of old components

SECONDARY STORAGE

Elasticsearch cluster

Observe/
Consume UT

1) Send Command
User

2) Response

Observe/
Consume UL

Challenge(s) handling > Plan

Operate

6) Read data

PRIMARY STORAGR

Archive finished instances

5) Write aggregated data

4) Read Zeebe Indices

Zeebeclu

Engine

Process Commands -
confirms with Events

N\

Exporter

3) Export Event

//

4)

ad Zfebe Indices

Tasklist

6) Read data

) Write aggregated data

Archive finished instances

Operate
historic
indices Clean up
Operate
indices
Clean up
Zeebe indices *
Tasklist
indices
T?Skll?t Clean up
historic
indices

ILM

e

e

Merge data structure

SECONDARY STORAGE

Elasticsearch cluster

Operate

Archive finished instances Onerate
3 &

h 4
6) Read data i

uI S Clean up

Observe/

Consume UL ! v/ @ 5) Write aggregated data
o
A

4) Read Zeebe Indices
PRIMARY STORAGE

Zeebe cluster
Clean up

Engine
1) Send Command 3) Export Event
User Process Commands - Exporter

confirms with Events

[

Camunda Indices IiLm

2) Response

4) Bead Zfebe Indices
T st
Tasklist i s
v) Write aggregated data
Observe/ m ﬂ
o - T. yst
Consume UI | 6) Read data \ X Clean up
Ul h ic
indices

n ﬂ Archive finished instances
Al

Challenge(s) handling > Plan

CAMUNDA
CON EF3

AMSTERDAM

<+

cycle

Challenge handling 9

\ We are here now

e

Long way to go

Challenge(s) handling > Implement

https://unsplash.com/@tateisimikito?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/@tateisimikito?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/toddlers-standing-in-front-of-beige-concrete-stair-bJhT_8nbUA0?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/toddlers-standing-in-front-of-beige-concrete-stair-bJhT_8nbUA0?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Encountering obstacles

Photo by Andrea De Santis on Unsplash

Challenge(s) handling > Implement

e

https://unsplash.com/@santesson89?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/@santesson89?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/a-couple-of-large-sculptures-sitting-on-top-of-a-cement-floor-g4xIcepnx6I?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/a-couple-of-large-sculptures-sitting-on-top-of-a-cement-floor-g4xIcepnx6I?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Encountering obstacles

Challenge(s) handling > Implement

e

Encountering obstacles

Challenge(s) handling > Implement

e

Encounterin

Challenge(s) handling > Implement

stacles

e

Encounterin

Challenge(s) handling > Implement

stacles

e

Encounterin stacles

e

W)
e 72 “eee &
4{‘,{//:2‘ o 5(5’8.90
/bef‘qte
cpere”
¢ ffe

g 00 ¢!

\N\/xo‘ v”*t.‘om What about cuctom index prefixec?
) LI
(i
0"

Challenge(s) handling > Implement

Encounterin

stacles

[~

Challenge(s) handling > Implement

Who ic in charge of the

Sehema management?

-

bo ra,

P Thdex ,breﬁ'xec?

e

JU AWAYYS
SEENS

IMROSSI
U NITI[IITS
DONE

BIlE

https://unsplash.com/@foulsterr?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/@foulsterr?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/a-neon-sign-that-says-it-always-seems-impossible-until-its-done-8W5Uw571B_c?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/a-neon-sign-that-says-it-always-seems-impossible-until-its-done-8W5Uw571B_c?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

One
exporter to
rule them
all

Photo by DAV IDS ONLUN A on Unsplash

Challenge(s) handling > Implement

https://unsplash.com/@davidsonluna?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/@davidsonluna?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/map-8zvGIv4pw1I?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/map-8zvGIv4pw1I?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

One
exporter to
rule them
all

Challenge(s) handling > Implement

/

e

User
1) Send Command
2) Response
Observe/
Consume UI

PRIMARY STORAGE

/

Zeebe cluster j

Engine Camunda Exporter
Process Commands - .
confirms with Events Arc hlver
Archive
data
Tasklist/Operate
-
“ Read data

3) Write aggregated
data

SECONDARY STORAGE

Harmonized
indices

Elasticsearch cluster

Harmonized
historic
indices

ILM

Brownfield

Software engineering is not hard because we have to create new things.

Challenge(s) handling > Implement

Brownfield

Software engineering is not hard because we have to create new things.

It is hard because we have to maintain old products and versions.

Challenge(s) handling > Implement

Brownfield

New Architecture (simplified)

We covered you

e

User

1) Send Command

2) Response

Ohserve/
Consume UI

Challenge(s) handling > Implement

Zeebe cluster

Engine
Process Commands -
confirms with Events

Camunda Exporter

Archiver

ES Exporter

3) Export 8.7 Events

Tasklist/Operate

UI

Importer

Tasklist
Importer
8.7

Operate
Importer 8.7

Archive data

3) Write
aggredated
data

5) Write old data
into Harmonized
indices

Elasticsearch cluster

ILm

Harmonized
historic A
indices
Zeebe indices
Harmonized
indices
Tasklist Operate
Indices Indices

Brownfield

New Architecture (simplified)

No manual data migration

e

User

1) Send Command

2) Response

Ohserve/
Consume UI

Challenge(s) handling > Implement

Zeebe cluster

Engine
Process Commands -
confirms with Events

Camunda Exporter

Archiver

ES Exporter

3) Export 8.7 Events

Tasklist/Operate

UI

Importer

Tasklist
Importer
8.7

Operate
Importer 8.7

Archive data

3) Write
aggredated
data

5) Write old data
into Harmonized
indices

Elasticsearch cluster

Harmonized

historic
indices

Zeebe indices

ILm

Harmonized
indices

Tasklist Operate
Indices Indices

Brownfield

New Architecture (simplified)

e

User

1) Send Command

2) Response

Ohserve/
Consume UI

Challenge(s) handling > Implement

Zeebe cluster

Engine
Process Commands -
confirms with Events

Camunda Exporter

Archiver

ES Exporter

3) Export 8.7 Events

Tasklist/Operate

UI

Importer

Tasklist
Importer
8.7

Operate
Importer 8.7

[rangition period

Archive data

3) Write
aggredated
data

5) Write old data
into Harmonized
indices

Elasticsearch cluster

ILm

Harmonized
historic A
indices
Zeebe indices
Harmonized
indices
Tasklist Operate
Indices Indices

Brownfield

Photo by Markus Winkler on Unsplash

Challenge(s) handling > Implement

¥

For more details,
please check
our upcoming update guide.

e

https://docs.camunda.io/docs/next/self-managed/operational-guides/update-guide/870-to-880/
https://unsplash.com/@markuswinkler?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/@markuswinkler?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/white-printer-paper-on-green-typewriter-cxoR55-bels?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/white-printer-paper-on-green-typewriter-cxoR55-bels?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

CAMUNDA
CON EF3

AMSTERDAM

+

Photo by Eric Prouzet on_Unsplash

Challenge(s) handling > Evaluate

https://unsplash.com/@eprouzet
https://unsplash.com/photos/a-close-up-of-a-clock-on-a-wall-_MOOIjWPzSM

Load testin

Cusiomer
@ Q 5
file dispure ﬁ& 1 Q
i . ! !
P! ! i
|] Bank IT and CRM systems | |
! 1 |
h i] & oY & | i
creats pracess | | I [[
] 1 | |
T a0 t = t t
I [[[! I
] 1 | |
I | | ™ - | |
| 1 | | Fraud Claim Investigation | | |
| | decision |
| v quEcomeT —O— I
Y %]
DoCument vendor fraud aterminie Initiate credit | - st-'l:lnh:[rn;boul
Request I validation fraud rating and clawback Jsu_'cess:'ul
Process confidence action I :Iairr
credit Card AU fraud claim W | B dispute seted
-] dispute started OREE mvestigation @ - rafund
& . stared | "} . |
I O
| -
| | o
I I Decide on fraud o refund customer about
| Y case unsuccessiul
] marual decision claim
| low confidanca required dispute setied
I I - escalate - no refund
1 A
f
| 1
1
f 1
raquest prac signed charga sl
st ge slip
vendor

Challenge(s) handling > Evaluate

Load testing

Bank IT and CRM systems

dispute sated
refund

L

customer about
unsuccessiul

claim
disput settied
- o refund

regues poof 4, signed charge slip

Challenge(s) handling > Evaluate

Load testing with
real use-case
Based on Credit
Fraud Detection

blueprint

e

https://marketplace.camunda.com/en-US/apps/449510/credit-card-fraud-dispute-handling
https://marketplace.camunda.com/en-US/apps/449510/credit-card-fraud-dispute-handling
https://marketplace.camunda.com/en-US/apps/449510/credit-card-fraud-dispute-handling

Load testing

Challenge(s) handling > Evaluate

e

Load testing with
real use-case
Based on Camunda
Fraud detection
blueprint

1PI/s

~150 tasks/s

https://marketplace.camunda.com/en-US/apps/449510/credit-card-fraud-dispute-handling
https://marketplace.camunda.com/en-US/apps/449510/credit-card-fraud-dispute-handling
https://marketplace.camunda.com/en-US/apps/449510/credit-card-fraud-dispute-handling

Load testing - Deployment

Before After

e

7 Zeebe Gatewayrsn

Zeebe Gateway

Zeebe Gateway ‘

uI

' (]
—*{ Importer |

"N —
> Archiver

Elasticsearch

Challenge(s) handling > Evaluate

— Camunda A—

Camunda 4—>| Camunda

Elasticsearch

Orchestration Cluster

Resource
consumption

Challenge(s) handling > Evaluate

Harmonized indices schema diagram

Operate indices

operate-batch-operation-1.0.0_
operate-decision-8.3.0_
operate-decision-instance-8.3.0_
operate-decision-requirements-8.3.0_
operate-event-8.3.0_
operate-flownode-instance-8.3.1_
operate-import-position-8.3.0_
operate-incident-8.3.1_
operate-list-view-8.3.0_
operate-message-8.5.0_
operate-metric-8.3.0_
operate-migration-steps-repository-1.1.0_
operate-operation-8.4.0_
operate-post-importer-queue-8.3.0_
operate-process-8.3.0_
operate-sequence-flow-8.3.0_
operate-user-1.2.0_
operate-user-task-8.5.0_
operate-variable-8.3.0_
operate-web-session-1.1.0_

Harmonized indices

operate-batch-operation-1.0.0_
operate-decision-8.3.0_
operate-decision-instance-8.3.0_
operate-decision-requirements-8.3.0_
operate-event-8.3.0_
operate-flownode-instance-8.3.1_
operate-incident-8.3.1_
operate-list-view-8.3.0_
operate-message-8.5.0_
operate-metric-8.3.0_
operate-operation-8.4.0_
operate-post-importer-queue-8.3.0_
operate-process-8.3.0_
operate-sequence-flow-8.3.0_
operate-variable-8.3.0_

tasklist-draft-task-variable-8.3.0_
tasklist-form-8.4.0_
tasklist-metric-8.3.0_
tasklist-task-8.5.0_
tasklist-task-variable-8.3.0_

Zeebe indices

zeebe-record_deployment_8.7.1_*
zeebe-record_incident_8.7.1_*

zeebe-recor
zeebe-record_| 871>
zeebe-record_p e 8.7.1_*
zeebe-recor

zeebe-record_varlable_8.71_
zeebe-record_variable-document_8.7.1_*

zeebe-record_| ription_8.7.1_*

Tasklist indices

tasklist-flownode-instance-8.3.0_
tasklist-import-position-8.2.0_
tasklist-metric-8.3.0_
tasklist-migration-steps-repository-1.1.0_
tasklist-process-8.4.0_
tasklist-user-1.4.0_
tasklist-task-8.5.0_
tasklist-variable-8.3.0_
tasklist-web-session-1.1.0_
tasklist-draft-task-variable-8.3.0_
tasklist-task-variable-8.3.0_
tasklist-form-8.4.0_
tasklist-process-instance-8.3.0_

e

Resource consumption

ES Disk Usage 8.8 8.7 - ES Disk Usage

ES CPU Usage 8.8 8.7 - CPU Usage

ES Memory Usa 8.7 - ES Memory Usage

Challenge(s) handling > Evaluate

Scalability - Before

Overview - 8.7 state (simplified)

e

SECONDARY STORAGE

Elasticsearch cluster

Operate

(CC—
6) Read dat
e e
User
.I.'.

5) Write aggregated data

4) Read Zeebe Indices

PRIMARY STORAGE
Zeebe cluster

PARTITION 1

Engine ‘
Process Commands - Exporter
confirms with Events

1) Send Command

2) Response
3) Export Event

Zeebe indices

PARTITION N

Engine ‘ [ﬁ
Process Commands - [EJ
confirms with Events

Challenge(s) handling > Evaluate

Scalability

Overview - 8.8 state (simplified)

- After

User
LS
@

Operate

PRIMARY STORAGE

4) Read data

Zeebe cluster

PARTITION 1

Engine

g Camunda
Process Commands - Exporter
confirms with Events

1) Send Command

2) Response

PARTITION N

Engine

Process Commands -
confirms with Events

Camunda
Exporter

Challenge(s) handling > Evaluate

3) Export Event

SECONDARY STORAGE

Elasticsearch cluster

Camunda indices

e

Performance - Before

Overview - 8.7 state (simplified)

User
eg®
@

1) Send Command

2) Response

Challenge(s) handling > Evaluate

Operate

uI

Importer

PRIMARY STORAGE

6) Read data

5) Write aggregated data

4) Read Zeebe Indices

Zeebe cluster

Engine

Process Commands -

confirms with Events

Exporter

3) Export Event

SECONDARY STORAGE

Elasticsearch cluster

Operate
indices

Zeebe indices

e

Performance - Before

Secondary storage data pipeline

1) Create Process Instance

2) Response

Challenge(s) handling > Evaluate

7) GET /v1/process-instances/:key e

Ul

Operate

Importer }

6) Read data

5) Write aggregated data

PRIMARY STORAGE

4) Read Zeebe Indices

Zeebe cluster

Engine

Process Commands -
confirms with Events

Exporter

3) Export Event

SECONDARY STORAGE

Elasticsearch cluster

Operate
indices

Zeebe indices

e

Performance - Before

Secondary storage data pipeline

Challenge(s) handling > Evaluate

SECONDARY STORAGE

e

~5s on average
from exported
until it is visible
by the API

Performance - After

User

1) Send Command

2) Response

Observe/
Consume UI

Challenge(s) handling > Evaluate

PRIMARY STORAGE

Zeebe cluster

Engine

Camunda Exporter

Process Commands - .
confirms with Events Archiver

Archive
data
|
Tasklist/Operate
uI
Read data

3) Write aggregated
data

SECONDARY STORAGE

Elasticsearch cluster

Harmonized
indices

Harmonized
historic
indices

ILM

e

e

Performance - After

NDARY STORAGE
Elasticsearch cluster
User
1) Send Command armonized
indices

2) Response ILM

armonized I
historic

indices

Observe/
Consume UI

Challenge(s) handling > Evaluate

Performance - After

e

RAGE

cluster

ILM

Observe/
Consume

Challenge(s) handling > Evaluate

CAMUNDA
CON EF3

We are here now —
AMSTERDAM /

What’s next

Overview - 8.8 state (simplified)

User
LS
@

Operate

PRIMARY STORAGE

4) Read data

Zeebe cluster

PARTITION 1

Engine

g Camunda
Process Commands - Exporter
confirms with Events

1) Send Command

2) Response

PARTITION N

Engine

Process Commands -
confirms with Events

Camunda
Exporter

Challenge(s) handling > Identify

3) Export Event

SECONDARY STORAGE

Elasticsearch cluster

Camunda indices

e

What’s next

Overview - 8.8 state (simplified)

User
LS
@

Operate

PRIMARY STORAGE

4) Read data

Zeebe cluster

PARTITION 1

Engine

g Camunda
Process Commands - Exporter
confirms with Events

1) Send Command

2) Response

PARTITION N

Engine

Process Commands -
confirms with Events

Camunda
Exporter

Challenge(s) handling > Identify

3) Export Event

SECONDARY STORAGE

Elasticsearch cluster

Limi

/

Camunda indices

ting factor

e

What’s next

Overview - 8.8 state (simplified)

User
e
@

Operate

4) Read data

1) Send Command

2) Response

PRIMARY STORAGE
Zeebe cluster
PARTITION 1
. A
Englne Camunda B
Process Commands - Exporter
confirms with Events
& u

PARTITION N

Engine

Process Commands -
confirms with Events

Camunda
Exporter

Challenge(s) handling > Identify

3) Export Event

SECONDARY STORAGE

Elasticsearch cluster

Limi

/

Camunda indices

New scaling
possibilities

ting factor

e

What’s next

Overview - 8.8 state (simplified)

User
LS
@

Operate

PRIMARY STORAGE

4) Read data

Zeebe cluster

PARTITION 1

Engine

g Camunda
Process Commands - Exporter
confirms with Events

1) Send Command

2) Response

PARTITION N

Engine

Process Commands -
confirms with Events

Camunda
Exporter

Challenge(s) handling > Identify

3) Export Event

3) Export Event

SECONDARY STORAGE

Elasticsearch cluster

Partition 1
Camunda indices

Partition N
Camunda indices

e

Several other new possibilities

Always improve

All of this to improve and provide a kick-ass user experience;

and a product you can rely on.

Thorben Lindhauer
Svetlana Dorokhova
Deepthi Akkoorath
Mustafa Dagher
Euro Lew

Carlo Sana
Panagiotis Goutis
Rodrigo Lopes
Marcos Vieira

Joshua Windels

Aleksander Dytko

Nicolas Pepin-Perreault

Christopher Kujawa

https://github.com/thorbenlindhauer
https://github.com/sdorokhova
https://github.com/deepthidevaki
https://github.com/mustafadagher
https://github.com/eurolew
https://github.com/entangled90
https://github.com/panagiotisgts
https://github.com/rodrigo-lourenco-lopes
https://github.com/marcosgvieira
https://github.com/RomanJRW
https://github.com/aleksander-dytko
https://github.com/npepinpe
https://github.com/ChrisKujawa

Thorben Lindhauer
Svetlana Dorokhova
Deepthi Akkoorath
Mustafa Dagher

T THANK YOU!

Panagiotis Goutis
Rodrigo Lopes
Marcos Vieira

Joshua Windels

Aleksander Dytko

Nicolas Pepin-Perreault

Christopher Kujawa

https://github.com/thorbenlindhauer
https://github.com/sdorokhova
https://github.com/deepthidevaki
https://github.com/mustafadagher
https://github.com/eurolew
https://github.com/entangled90
https://github.com/panagiotisgts
https://github.com/rodrigo-lourenco-lopes
https://github.com/marcosgvieira
https://github.com/RomanJRW
https://github.com/aleksander-dytko
https://github.com/npepinpe
https://github.com/ChrisKujawa

Thank You

e nicolas.pepin-perreault@camunda.com

P4 e christopher.kujawa@camunda.com
. e npepinpe
n e kujawa-christopher

@ Zeebe Chaos Blog

mailto:nicolas.pepin-perreault@camunda.com
mailto:christopher.kujawa@camunda.com
https://www.linkedin.com/in/npepinpe/
https://www.linkedin.com/in/kujawa-christopher/
https://camunda.github.io/zeebe-chaos/

Questions?

	Slide 1: One exporter to rule them all
	Slide 2: Introductions
	Slide 3: Operational delay
	Slide 4: One exporter to rule them all
	Slide 5
	Slide 6: Camunda 8 Overview
	Slide 7: Camunda 8
	Slide 8: Camunda 8
	Slide 9: Orchestration Cluster
	Slide 10: Data flow
	Slide 11: A Tale of Two Storages
	Slide 12: Primary Storage
	Slide 13: Secondary Storage
	Slide 14: The Importer: Aggregating
	Slide 15: The Importer: Aggregating
	Slide 16: The Importer: Aggregating
	Slide 17: The Importer: Writeback
	Slide 18: E2E Data Flow
	Slide 19: And that’s only part of it…
	Slide 20: Mantra
	Slide 21: Mantra
	Slide 22: Mantra
	Slide 23
	Slide 24
	Slide 25: Reviewing our architecture
	Slide 26: Challenges with the architecture
	Slide 27: Challenges with the architecture
	Slide 28: Installation complexity
	Slide 29: Challenges with the architecture
	Slide 30: Secondary storage: Resource consumption
	Slide 31: Secondary storage: Resource consumption
	Slide 32: Secondary storage: Resource consumption
	Slide 33: Secondary storage: Resource consumption
	Slide 34: Challenges with the architecture
	Slide 35: Scalability
	Slide 36: Scalability
	Slide 37: Scalability
	Slide 38: Scalability
	Slide 39: Scalability
	Slide 40: Challenges with the architecture
	Slide 41: Performance
	Slide 42: Performance
	Slide 43: Performance
	Slide 44: Performance
	Slide 45: Performance
	Slide 46: Challenges with the architecture
	Slide 47
	Slide 48: We need to change our architecture
	Slide 49: Move closer to the processing
	Slide 50: Get rid of old components
	Slide 51: Merge data structure
	Slide 52
	Slide 53: Long way to go
	Slide 54: Encountering obstacles
	Slide 55: Encountering obstacles
	Slide 56: Encountering obstacles
	Slide 57: Encountering obstacles
	Slide 58: Encountering obstacles
	Slide 59: Encountering obstacles
	Slide 60: Encountering obstacles
	Slide 62
	Slide 63: One exporter to rule them all
	Slide 64: One exporter to rule them all
	Slide 65: Brownfield
	Slide 66: Brownfield
	Slide 67: Brownfield
	Slide 68: Brownfield
	Slide 69: Brownfield
	Slide 70: Brownfield
	Slide 71
	Slide 72: Load testing
	Slide 73: Load testing
	Slide 74: Load testing
	Slide 75: Load testing
	Slide 76: Load testing - Deployment
	Slide 77: Resource consumption
	Slide 78: Resource consumption
	Slide 79: Scalability - Before
	Slide 80: Scalability - After
	Slide 81: Performance - Before
	Slide 82: Performance - Before
	Slide 83: Performance - Before
	Slide 84: Performance - After
	Slide 85: Performance - After
	Slide 86: Performance - After
	Slide 87
	Slide 88: What’s next
	Slide 89: What’s next
	Slide 90: What’s next
	Slide 91: What’s next
	Slide 92: Several other new possibilities
	Slide 93: Always improve
	Slide 94
	Slide 95
	Slide 96
	Slide 97: Questions?

